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» What is a “satellite simulator” and why is it needed?

» The Cloud Feedback Model Intercomparison Project
Observation Simulator Package (COSP) and its status

» What is now possible with simulators
» Examples of science enabled by simulators

» Summary and future plans
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Why “satellite simulators” for clouds? fpevi

» There are significant differences between how a climate
model represents clouds and what satellites see
— scale of model grids (~100 km) vs. satellite pixels (~1 km)
— model variables and satellite observables

» We need a way to interpret a model that minimizes the
effects of different definitions and observational
limitations in order that differences between models and
observations are more likely due to model problems
rather than satellite artifacts

» The “simulator” is a piece of diagnostic code that
converts model variables into pseudo-satellite
observations (retrieval quantities and instrument signals)

— A simulator facilitates wider and better use of satellite
observations by the climate modeling community



&

What is in a satellite simulator? fpavr

» Satellite simulator contains in code the things needed to
“simulate” the observational process:

— What would a satellite see if the atmosphere had the clouds of a
climate model?

» A satellite simulator contains
— A “down-scaler” from large-scale to satellite-scale
— Simplified forward models (e.g. dBZ, S, T,) & retrieval algorithms

» Simulators address these problems

— Cloud overlap (column-integrated r and cloud-top pressure p,, of
the high cloud in the column)

— Detection thresholds (r >= 0.3, dBZ > -25, SR > 5)

— Retrieval characteristics (p,, from T, (ISCCP), CO, slicing
(MODIS) or stereo-imaging (MISR))

Stephen A. Klein, 5 October 2011, p. 4
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Simulator considerations fecwi

» A simulator needs to be practical
— It needs to fast enough to be included in climate models while
they’re integrating
— Thus simulators do not include everything about the

observational process (e.g. satellite view angle effects on cloud
detection, calibration coefficients of different satellites)

The simulator must take care of first-order issues with a simplified
calculation

» Simulators do not solve all difficulties in comparing
models to observations

— As an example, simulators can’t deal with satellite artifacts that
result from partially cloudy satellite pixels

— Simulators are a significant step in the right direction, but they
don’t preclude other ways of comparing observations and models

Stephen A. Klein, 5 October 2011, p. 5
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COSP Flow Chart (ecnn
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Simulator example (Calipso) fecrmr
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End Result (pcm
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COSP Status (ecwn

» About 5 years ago, the CFMIP community banded
together to form community software package of
simulators for the climate modeling community

» COSP code is freely available http://code.google.com/p/cfmip-obs-sim/
and is governed by a project management committee

» COSP has simulators for 5 observational products
— ISCCP, MISR, MODIS, CloudSat, Calipso

» All major climate models use it (cawcr, cNRM, BCC, 1AP, CCCMa,
GFDL, KNMI, LMD, MPI, NASA/GISS, NCAR, NIES, MRI, UKMO, JAMSTEC, etc.)

— Used in Japanese 14 km NICAM
— Most have put the code in-line to their model

» A matching set of observations for each simulator has
been specially prepared in ESG compatible format and is
available from http://climserv.ipsl.polytechnique.fr/cfmip-obs.html

Stephen A. Klein, 5 October 2011, p. 10
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What is now possible with COSP



Comparison to multiple satellites e

CALIPSO: 0.67 ISCCP: 0.66 MISR: 0.71

Total Cloud Fraction

Kay et al. (2011)
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» What model strengths and problems are robust

» A comparison is meaningful when total cloud fraction is
well-defined

Stephen A. Klein, 5 October 2011, p. 12



E
Diagnostics for model development fpen
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MISR cloud-top height — r histograms
(40N-60N, 160E-125W)
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Simulators can mimic some of the
differences between satellites
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» |f models produc

high thin over
thick low clouds,
the ISCCP
simulator will
produce a middle
level cloud and
MODIS simulator
will produce a
high-topped cloud

» Differences

between ISCCP
and MISR are an
estimate of multi-

layer cloud
(Marchand et al. 2010)
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Science enabled by COSP



Models have too many optically thick (=
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» CAMS now computes the
radiative properties of
snow; treating this in the
simulator dramatically
increases the amount of
middle level cloud
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Models have too few middle level cloud ¢a:
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Models precipitate too frequently fecvmr
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Diagnosing cloud feedbacks to climate |=
change (echnn
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Diagnosing cloud Cloud Feedback
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Summary and future plans fpavr

» The adoption of satellite simulators for clouds by the
climate modeling community has greatly facilitated
— better and wider use of satellite data by climate modelers

— credible inter-model comparisons of cloud properties and
feedbacks

» What's coming up for satellite simulators?

— Simulator improvements: aerosols, precipitation, better sub-grid
distributions, improved use by CRMs/LES models

— CMIP5/CFMIP2: a much larger set of experiments and simulators
will be collected facilitating a much more detailed analysis of
clouds and their feedbacks in climate models

» You have opportunities to contribute
— Evaluation of model output
— Contributing new diagnostics or simulator capabilities

Stephen A. Klein, 5 October 2011, p. 22
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Questions?
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Extra slides
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COSP output variable list (e

Taeee |. List of diagnostics from the COSP version 1.3. MODIS Total doud fraction
Simulator Output diagnostics Liquid cloud fraction
CALIPSO Lidar total backscatter (532 nm) Ice cloud fraction
Lidar molecular backscatter High-level cloud fraction

Helght-scattering ratio histograms

Low-level doud fraction (CTP > 680 hPa)

Midlevel cloud fraction
Low-level doud fraction

Midlevel cloud fraction (440 < CTP < 680 hPa) Total doud optical thickness

High-level cloud fraction (CTP < 440 hPa) Liquid cloud optical thickness

3D cloud fraction Ice cloud optical thickness

Total doud fraction Total doud optical thickness [Log, (mean)]
OoudSat Radar reflectivity Liquid cloud optical thickness [Log, (mean)]

Helght-reflectivity histograms Ice cloud optical thickness [Log, (mean)]
ISCCP Mean cloud albedo Liquid cloud particle size

Mean CTP Ice cloud particle size

Mean 10.5-pm T, CTP-7 histograms

Mean clear-sky 10.5-pm T, Cloud liquid water path

Mean cloud optical depth Cloud Ice water path

CTP In each subcolumn Cloud area fraction

Cloud optical depth In each subcolumn PARASOL Monodirectonal reflactance

CTP-1 histograms RTTOV Clear-sky T,

Total doud fraction Combined CALIPSO cloud fraction undetected by CloudSat

MISR CTH-1 histograms

Stephen A. Klein, 5 October 2011, p. 25

Total doud fraction from CoudSat and CALIPSO




